Standard Error Calculator



   
Result:

The Standard Error Calculator to calculate the the method of measurement or Standard Error.

Standard Error formula

where

n is the size (number of observations) of the sample.

s is the sample standard deviation.

For example, when data set is {5,20,40,80,100}

Total Inputs(N) =(5,20,40,80,100)
Total Inputs(N)=5
Mean(xm)= (x1+x2+x3...xN)/N 
Mean(xm)= 245/5
Means(xm)= 49
-------------------------------------------
SD=
sqrt(1/(N-1)*((x1-xm)^2+(x2-xm)^2+..+(xN-xm)^2))
=sqrt(1/(5-1)((5-49)^2+(20-49)^2+(40-49)^2+(80-49)^2+(100-49)^2))
=sqrt(1/4((-44)^2+(-29)^2+(-9)^2+(31)^2+(51)^2))
=sqrt(1/4((1936)+(841)+(81)+(961)+(2601)))
=sqrt(1605)
=40.06245124802026

-------------------------------------------
Finding Standard Error

Standard Error=SD/ sqrt(N) 
Standard Error=40.06245124802026/sqrt(5)
Standard Error=40.0625/2.2361

Standard Error=17.9165
Buy A Calculator On Amazon
Standard Error Calculator is an online statistics tool programmed to calculate the Standard Error or the method of measurement or estimation of the standard deviation of the sampling distribution associated with the estimation method