Calculate Collinearity of Three Points |
In coordinate geometry, three points could make a triangle, if the area of triangle is zero, It means the three points is collinear, else the points are non-collinear.
For example, Point A (x1,y1) = (1, 2), Point B (x2,y2) = (3, 5), Point C (x3,y3) = (4, 7).
Area = 1/2{ (x1 y2 + x2 y3 + x3 y1) - ( x2 y1 + x3 y2 + x1 y3) }
= 1/2{(5+21+8) - (6+20+7 )}
= 1/2(34 - 33)
= 1/2(1)
= 0.5
Area != 0; The given points are non collinear.
Language Choice:日本語 | 한국어 | Français | Español | ไทย| عربي | русский язык | Português | Deutsch| Italiano | Ελληνικά | Nederlands | Polskie| Tiếng Việt| বাংলা| Indonesia| Pilipino| Türk| فارسی| ລາວ| ဗမာ| български| Català| čeština|
More Tools:Online Calculators | Worldwide Zipcode | Conversores de código | Metric Conversion Online | Online Calculators | Cool Symbols |
Copyright ©2021 - 2031 All Rights Reserved.